Аннотация: Формулируется и доказывается вариационный принцип экстремума для вязкой несжимаемой жидкости, из которого следует, что уравнения Навье-Стокса являются условиями экстремума некоторого функционала. Описывается метод поиска решения этих уравнений, который состоит в движении по градиенту к экстремуму этого функционала. Формулируются условия достижения этого экстремума, которые являются одновременно необходимыми и достаточными условиями существования глобального экстремума этого функционала. Затем выделяются т.н. замкнутые системы. Для них доказывается, что необходимые и достаточные условия существования глобального экстремума указанного функционала имеются всегда. Соответственно, метод поиска глобального экстремума всегда заканчивается успешно и тем самым определяется единственное решение уравнений Навье-Стокса. Утверждается, что системы, описываемые уравнениями Навье-Стокса и имеющие определенные граничные условия (давления или скорости) на всех границах, являются замкнутыми. Показывается, что к таким системам относятся системы, ограниченные непроницаемыми стенками, свободными поверхностями, находящимися под известным давлением, подвижными стенками, находящимися под известным давлением, т.н. генерирующими поверхностями, через которые поток жидкости проходит с известной скоростью. Книга дополняется открытыми кодами программ в системе MATLAB - функциями, реализующими расчетный метод, и тестовыми программами. Ссылки на тестовые программы даются в тексте книги при описании примеров. Программы передаются автором по запросу на [email protected]
|